Minggu, 10 Januari 2010

ENGINE 2 TAK BASIC

Basic 2 stroke Tuning


Merubah tenaga dari mesin 2 tak sesungguhnya sangat simple ketika kamu mengetahui teknik dasar mesin 2 tak. Kebanyakan kesalahan adalah memilih kombinasi yang kurang pas dari komponen mesin sehingga mesin justru berlari lebih parah dari standardnya, pernah mengalami? Karena memodifikasi mesin 2 tak memerlukan tidak hanya budget yang besar dalam pendanaan melainkan juga strategi modifikasi. Seperti kutipan graham bell pada halaman pertama buku TWO-STROKE PERFORMANCE TUNING karangannya, modifikasi dan pengerjaan yang terlalu berlebihan ( bore up , porting terlalu lebar / tinggi ) bisa jadi justru menyakitkan karena hasil yang jauh dari harapan. Namun pengerjaan sederhana, berhati-hati, dan menunda untuk modifikasi extreme belakangan bisa jadi adalah kunci kinerja mesin 2 tak.
SIKLUS MESIN 2 TAK

SIKLUS MESIN 2 TAK

PRINSIP KERJA 2 TAK

Meski mesin 2 tak terlihat lebih simple dari mesin 4 tak, dengan komponen yang sangat sedikit, hanya piston didalam silinder, namun sesungguhnya mesin 2 tak sangat komplex dalam kalkulasi : utamanya memanfaatkan dinamika gerak gas dalam mesin untuk menghasilkan tenaga. Ada fase-fase berbeda yang sangat berpengaruh didalam crankcase maupun didalam blok cylinder pada waktu bersamaan, sehingga mesin 2 tak mampu bekerja lebih efisien (hanya cukup 360 derajat putaran kruk as, dibanding 720 derajat putaran kruk as oleh mesin 4 tak) inilah yang menyebabkan ledakan tenaga mesin 2 tak terasa menyengat dibanding 4 tak. Rahasia tenaga mesin 2 tak adalah pengaturan kompresi primer dan sekunder didalam mesin.

Inilah mengapa seringkali kita menyarankan pada rat rider kalau ingin mengirim mesin untuk dikerjakan sebaiknya seluruh mesin atau motornya dipaketkan sekalian, karena tidak cukup hanya modifikasi blok atau head saja. Mari kita amati cara kerja mesin 2 tak dalam sisi dinamika gas :

1) Awal mula piston berada pada titik mati atas (TMA , nol derajat kruk as) bunga api mulai meletik dan gas dalam ruang bakar menyebar dan mendorong piston turun sebagai awal langkah usaha. Gaya dorong piston ini menekan gas ke dalam crankcase hingga menyebabkan petal terbuka. Kompresi pada kruk as tersebut penting untuk menimbulkan kekuatan hisap pada reed valve, apalagi dibantu membran seperti v-Force dengan banyak katub buluh sehingga meski kompresi rendah campuran gas segar sudah dapat dengan mudah masuk. Pada sudut 90 derajat kruk as, dan piston berada dalam akselerasi negatif maksimum, porting exhaust terbuka sebagai tanda berakhirnya langkah usaha. Gas panas akan terbuang dengan sendirinya keluar ke knalpot. Kompresi pada kruk as mulai melemah saat porting transfer mulai terbuka. Tekanan dalam silinder harus diturunkan lebih rendah dari tekanan pada crankcase dengan tujuan agar gas yang tidak terbakar dapat keluar dari transfer ports selama masa pembilasan.

2) Transfer port terbuka sekitar 120 derajat sebelum titik mati bawah (TMB). Pembilasan dimulai. Artinya gas segar keluar dari porting transfer dan menyatu untuk membentuk sebuah siklus. Gas akan bergerak ke atas menuju belakang silinder dan berputar terus membilas sisa gas pembakaran dari proses power stroke. Penting bahwa sisa gas pembakaran harus dibuang sempurna, untuk membuka ruangan bagi campuran udara segar ke dalam ruang bakar. Itu adalah kunci membuat tenaga besar pada mesin dua tak. Semakin banyak gas segar yang mampu di kompresi pada kubah pembakaran = semakin besar tenaga tercipta!

Sekarang gas segar juga turut terbuang hingga bagian header pada knalpot. Tapi gas segar ini tidak akan lolos begitu saja karena gelombang tekanan kompresi mempunyai pantulan dari desain ujung pipa knalpot yang baik, untuk membawa paket gas segar kembali ke dalam silinder sebelum piston menutup seluruh lubang porting. Inilah keunikan dari efek SUPER CHARGE pada mesin 2 tak. Dari sini terlihat betapa pentingnya desain knalpot 2 tak, perhitungan matang untuk mengurangi trial n error sangat dibutuhkan. Keunggulan utama dari mesin 2 tak adalah bahwa mereka mampu membakar lebih banyak udara/bahan-bakar dibandingkan kapasitas mesin yang terhitung melalui kalkulasi. Sebuah contoh : Mesin 4 tak 125 cc sesungguhnya mungkin hanya mampu membakar 110 cc campuran udara/bahan-bakar dalam silinder, dengan efisiensi pabrikan 88 % (kemungkinan lebih rendah dari itu) sedangkan mesin 2 tak 125 cc standard kemungkinan bisa membakar 180cc campuran udara-bahan bakar didalam silinder. Mampu melihat bedanya? Bisa membuat gambaran bagaimana merancang mesin 4 tak agar mampu melawan mesin motor 2 tak?

porting 2 tak

porting 2 tak

3) Kini kruk as telah berputah melewati titik mati bawah (180 derajat) dan piston memulai langkah upstroke. Gelombang kompresi yang memantul dari pipa knalpot membawa gas segar kembali melewati exhaust port (kini juga berfungsi menjadi inlet port bukan?) seiring piston menutup seluruh porting maka kompresi dimulai. Di dalam kruk as, tekanan menjadi lebih rendah dari tekanan atmosfer, menimbulkan kevakuman dan hisapan ini akan mebuka katub buluh dan memasukkan gas segar ke dalam crankcase.

4) Gas yang tidak terbakar akan tertekan dan beberapa saat sebelum piston meraih TMA, sistem pengapian akan meletikkan bunga api dan memulai proses pengapian. Dan siklus akan terus berulang.

Pelajari bagaimana proses dasar mesin 2 tak bekerja. Kapan porting mulai terbuka dan tertutup dalam durasi derajat kruk as, niscaya modifikasi kita akan berada pada jalan yang tepat.

PORTING

Porting dalam silinder didesain oleh para insinyur untuk menciptakan tenaga dalam rentang RPM tertentu sehingga menghasilkan karakter mesin tersendiri. Mengurangi metal dalam porting (exhaust dan transfer) berarti merubah durasi, luasan area, volume, serta sudut porting dengan tujuan untuk menentukan rentang tenaga sesuai kondisi trak dan karakter pengemudi. Sebagai contoh, mengendarai RM250 pada pegunungan berbatu perlu penyetelan agar tenaga lebih berisi pada putaran bawah – menengah karena mendaki lembah dan kelembaban udara pegunungan. Bagaimana kita mampu memodifikasi sebuah mesin? Sebelumnya kita harus mendapat sebanyak mungkin data dan informasi tentang karakteristik mesin standard pabrikannya. Kalkulasi ini penting ketika menyangkut PORTING – LUASAN AREA – DURASI. Ukuran area porting dan durasi berhubungan dengan kapasitas mesin dan RPM (mirip durasi noken as bukan?) Kemudahan kita memahami mesin 4 tak akan membawa kita pada pemahaman lebih dalam pada dinamika mesin 2 tak. Mudah untuk membuat 2 tak kencang, lebih mudah membuat mesin 2 tak lambat. Dan perlu kalkulasi mendalam untuk menciptakan mesin 2 tak yang Sangat Kencang!.

CYLINDER HEAD

Cylinder heads bisa dibentuk ulang untuk menciptakan karakter mesin. Head dengan diameter kecil dan ruang bakar yang dalam, serta squish lebar ( 60% dari area boring ) Dikombinasi dengan rasio kompresi 9 : 1 akan sangat pas dengan karakter mesin motorcross. Serta beberapa kombinasi lain akan memunculkan karakter mesi yang berbeda. Squish lebar dengan kompresi tinggi akan menciptakan turbulensi gas dalam ruang bakar. Diukur dalam satuan Maximum Squish Velocity, dalam satuan meter per detil. Supercross engine harus memiliki MSV sekitar 28 m/s. Perlu software khusus untuk menghitung MSV. Dalam buku graham bell, ada patokan tersendiri untuk menentukan karakter mesin (power band – RPM range).

CARBURETOR

Karburator pada mesin 2 tak adalah nyawa setelah modifikasi porting dan pengaturan kompresi. Karena durasi porting akan mempengaruhi puncak RPM mesin maka venturi karburator yang pas harus dilakukan dengan hati-hati. Secara umum, karburator kecil memiliki velocity tinggi dan cocok untuk karakter mesin yang mengandalkan torsi , dan tenaga pada RPM menengah. Untuk mesin 2 tak 125 cc, karburator dengan venturi 34mm akan cocok untuk berlomba pada supercross yang membutuhkan tautan-tautan torsi menuju power sangat cepat. Karburator 36 mm akan bekerja untuk yang membutuhkan speed.

REED VALVE

Membran! Sudah kami bahas panjang lebar tentang pentingnya klep pada motor 2 tak ini. Berpikirlah membran ini seperti klep pada mesin 4 tak. Semakin besar klep dengan luasan area yang lebar akan sangat bermanfaat untuk diperas tenaganya pada putaran mesin tinggi. Membran dengan lidah berjumlah 6 atau lebih akan menjadi pemimpin di lomba, disaat mesin dengan katub buluh berjumlah 2 atau 4 kehabisan nafas.

Ada 3 faktor penentu dalam pemilihan mebran : Sudut petal, Material petal, Ketipisan katub buluh. Rahasia tingkat tinggi ala mekanik internasional akan mudah kamu dapatkan pada membran buatan v-force, kala kita sudah kehabisan akal memodifikasi membran standard dengan main ganjal dan porting rumah membran. Material petal dari karbon kevlar yang sangat ringan akan membantu akselrasi hingga mensuplai di putaran tinggi. Pastikan mesin anda disokong perangkat isitimewa ini sebelum berlomba. Kekalahan akan terasa menyakitkan jika kita tidak mempersiapkan mesin pacuan kita dengan sempurna.

PIPA KNALPOT

Gelombang energi akan banyak dipasok dari hitungan dan desain knalpot yang tepat! Diameter, panjang, terutama 5 bagian utama dari pipa knalpot 2 tak akan menjadi daerah rawan untuk menciptakan tenaga pada RPM tertentu. Area itu adalah : Header, Difuser, Dwell, Baffle, dan Stinger. Secara umum, knalpot yang baik harus mampu menaikkan tenaga pada rpm lebih tinggi. Pastikan keseuaian silinder mesin dengan knalpot serta RPM yang akan sering dipakai sebelum memesan sebuah knalpot.

Exhaust tuning

Exhaust tuning

TIPS UNTUK BORE UP CYLINDER

Ketika kamu merubah kapasitas dalam silinder mesin, ada banyak faktor yang harus diperhatikan. Seperti : porting, rasio kompresi, jetting karburator, silencer dan timing pengapian. Ukuran dan durasi porting exhaust dan intake terbuka, berbanding dengan kapasitas mesin dan RPM. Ketika dinding liner digerus untuk memasukkan piston yang lebih besar, sadarkah bahwa transfer port akan berubah sudut, dan porting exhaust akan mengecil? Dan ketika kamu langsung saja melakukan hal ini, maka torsi pada RPM rendah akan melimpah, dan tenaga diputaran atas melemah.

Merubah sudut ruang bakar harus dilakuakan , serta rasio kubah dengan squish harus diatur ulang menyesuaikan diameter piston yang baru. Piston lebih besar berarti turbulensi lebih keras, sehingga squish harus dipersempit. Volume kubah ruang bakar harus diatur menyesuaikan kapasitas mesin yang baru. Atau mesin hanya akan terasa ’berhenti’ di putaran tinggi, berlari datar begitu saja. Bahkan lebih buruk akan timbul detonasi.

RASIO KOMPRESI DINAMIS

Ok, sampailah kita pada pembahasan Dynamic Compression Ratio, alias rasio kompresi dinamis, lebih mudah dipahami sebagai cylinder pressure alias tekanan dalam sebuah silinder. Ini adalah sebuah konsep penting dalam membangun sebuah karakter mesin ber performa tinggi. Sudah siap? Ayo tariiikkk mang..

Hal pertama yang harus kita tanamkan adalah “rasio kompresi (RK)” seperti biasa dibahas para tuner handal lebih cenderung pada term “Rasio Kompresi Statis”. Ini adalah konsep sederhana yang menampilkan perbandingan antara kapasitas mesin saat piston menghisap dalam sebuah silinder kemudian didorong dipadatkan ke ruang diatas permukaan piston kedalam ruang bakar saat berada di Titik Mati Atas (TMA).

Misal, sebuah silinder memiliki displacement 125cc dan volume combustion chamber 15cc ( sudah di plus-plus volume ketebalan gasket, dome piston, deck clearance, dll) maka RK akan didapat 140/15 = 9.33 : 1 alias mimik premium masih oke nih mesin. Jika kita melakukan mill pada cylinder head sebanyak 0.5mm dan mengurangi volume ruang bakar menjadi 12.5cc maka rasio kompresi sudah tembus 11 : 1 alias kudu minum pertamax plus. Dari sini saja kita sudah harus berhati-hati dan teliti tentang pemilihan bahan bakar yang bagus untuk mesin kita.

Sekaligus menjawab pertanyaan mengapa ketika melakukan bore up, motor malah molor dan seringkali ngelitik atau bahkan overheating karena ketidakcocokan bahan bakar dengan suasana hati mesin, tengkar deh… :) Jangan lupa Bore Up juga mempengaruhi, misal kapasitas didongkrak menjadi 150cc sedangkan head dipapas lagi sehingga volume ruang bakar tinggal 12.5cc, maka RK tembus di angka 13 : 1 yang sudah kudu mimik avgas. Masa iya motor gini mau dipakai harian? Pom bensin yang jual avgas dimana ya om… Hehehehehe

Semua orang tahu bahwasanya Mesin Performa Tinggi memiliki tipikal rasio kompresi tinggi. Semua halaman buku performa selalu bicara gampangnya, Semakin tinggi rasio kompresi maka semakin tinggi Kuda-Kuda tenaga yang dihasilkan. Bisa dipastikan pula peningkatan rasio kompresi sekaligus memperbaiki efisiensi volumetris dan respon puntiran gas. Jadi kenapa gak di pol-pol in aja madetin dome piston ke ruang bakar dan melejitkan RK setinggi langit seperti guru-guru kita jaman TK mengajarkan untuk menggantungkan cita-cita setinggi langit huahahahahah. Sekali RK menyentuh pada besaran nilai tertentu, kecenderungan detonasi akan muncul semakin besar pula. Siapakah detonasi? Bisa dibilang dia adalah sang trouble maker, lord voldemort di Harry potter, Tokoh jahat perusak mesin.

Detonation kill power and kill your engine! Ini bukan judul lagu, tetapi emang kenyataan bahwa detonasi bisa ngerusak mesin. Gimana cara mengatasinya? Sabar… Kemampuan mesin menahan beban rasio kompresi tinggi dapat diukur dari beberapa faktor, desain combustion chamber, material cylinder head, lapisan ruang bakar, material piston, bahan pembuat dinding liner, material valve, nilai rating busi -semakin panas suhu kerja mesin maka penggunaan busi ideal dengan nilai tinggi, semakin tinggi rasio kompresi penggunaan busi cenderung membutuhkan elektroda kecil yang memiliki voltase kuat dan fokus- Sekali aspek mekanis dalam mesin diperbaiki, maka variabel utama yang mebatasi tetep : KETERSEDIAAN BAHAN BAKAR DENGAN NILAI OKTAN TINGGI. Semakin tinggi nilai oktan = semakin tahan terhadap detonasi dan kemampuan toleransi terhadap tekanan kompresi.

NILAI OKTAN vs KOMPRESI RASIO

Dongeng diatas memunculkan pertanyaan yang seharusnya ada di pikiranmu, Seberapa tinggi seharusnya Rasio Kompresi mesin yang akan saya bangun? Kalaupun kamu mengetahui seluk beluk detail mesinmu dan memutuskan bahan-bakar apa yang bisa kamu peroleh dan akan kamu pakai, pertanyaan itu tetap tidak bisa terjawab dalam sekejab. Tanya Kenapa? Because karena tanpa referensi ataupun data dari spesifikasi noken as, RASIO KOMPRESI TIDAK BERARTI APA-APA!!! Lho, kok bisa? Dynotest yang akan membuktikan silahkan patok rasio kompresi yang sama dengan camshaft yang berbeda, gampangnya gini, mesin standard, upgrade pake camshaft CLD apa KAWAHARA atau kalau punya duit beli cam NMF thailand ngefek gak? Pasti ngefek! Well… dimana bedanya, kem mana yang memiliki performa paling oke di rentang RPM berapa.

Pikirin tentang bagaimana siklus sebuah mesin dan bagaimana dulu guru-guru kita mengajarkan proses mesin 4 langkah. Power stroke sudah selesai dan piston mulai bergerak naik ke atas. Klep masuk pastinya tertutup dan klep buang sudah terbuka. Seketika piston bergerak naik sekaligus membantu mendorong gas buang ke exhaust port. Sesaat sebelum piston mencapai TMA klep intake sudah mulai terbuka *disini point penting seringkali piston bertabrakan dengan klep adalah saat proses overlaping karena per klep floating, Piston berada pada TMA saat kedua klep terbuka sedikit untuk mendinginkan mesin. Kemudian piston bergerak turun dan klep buang tertutup sempurna dibarengi terbukanya klep hisap lebar-lebar. Gas segar masuk dengan sempurna ke dalam silinder. Sampailah piston di TMB dan ancang-ancang untuk melakukan langkah KOMPRESI! Inilah poin kritis kedua sebelum kita memahami Rasio Kompresi Dinamis (RKD).

Camshaft TIMING

Saat piston TMB, semua tahu klep intake masih terbuka. Akibatnya, meki piston sudah mulai bergerak naik, belum terjadi sedikitpun KOMPRESi karena klep intake masih terbuka. Kompresi baru dimulai jika dan hanya jika klep intake sudah tertutup penuh sempurna. Dan saat itulah campuran udara/bahan bakar dipadatkan! Rasio kompresi saat klep intake benar-benar sudah tertutup itulah yang dinamakan RKD.

RKD adalah kondisi pemadatan udara-bahan bakar yang sesungguhnya harus dihitung, bukan RK saja. Karena eh karena RKD tergantung pada derajat klep menutup, maka cam spec memiliki banyak effect dalam RKD sebagaimana spesifikasi teknis motor. RKD nilainya pasti lebih rendah dibanding RK. Kebanyakan mesin street performance dan semi-race motor memiliki RKD pada rentang 8 – 8.5 : 1. Dengan tipikal cam tertentu, bisa saja rasio kompresi mesin berada di 11 : 1 – 12 : 1. Lebih dari ini? Dipastikan lord voldemort akan muncul di mesinmu. Mesin dengan camsahft “kecil” akan butuh RK lebih rendah untuk mencegah detonasi. Mesin dengan cam “besar” dengan klep intake yang semakin lambat menutup bisa saja aplikasi rasio kompresi tinggi. Jika bisa mendapatkna VP Racing fuel maka sah-sah saja memakai RKD dan RK lebih tinggi. Tentu saja, motor balap dengan cam “lebar” bisa dipahami mereka bisa melewati rasio kompresi setinggi 13:1 – 15:1 karena eh karena cam mereka memiliki durasi overlaping lebih lama, yang berarti proses pendinginan mesin lebih lama serta RKD yang tetap proporsional.

Catatan : Banyak orang bingung dengan penggunaan istilah RKD. Beberapa orang mengartikannya sebagai karakteristik dari sebuah mesin yang melakukan proses running pada kecepatan tinggi. Dalam kasus tersebut, yang diperhatikan adalah volumetric efficiency dari mesin akan mempengaruhi secara signifikan terhadap tekanan silinder. Pada kasus kita, durasi noken as semakin lebar akan meningkatkan tekanan silinder lebih mendekati saat rev area saja. Sehinnga, semakin besar tenaga dan semakin besar tekanan silinder diciptakan pada RPM tinggi.

Enaknya kita memahami hal ini sebagai konsep “Tekanan Silinder” untuk menghindari kerancuan. Jadi ukuran RKD bisa ditilik setidaknya dari Compression Tester Gauge. Belum pada punya? Cape dehh… Beli napa ga nyampe 200rb ini…

Durasi noken as secara riil akan mempengaruhi performa sebuah mesin, sebagai contoh ketika kita memilih noken as berdurasi 310 derajat, kemudian kita ukur dengan dial gauge ternyata… this type of camshaft has an timing opening point @ 50 degree before the piston reach Top Dead Centre, dan benar-benar membuat klep intake menutup pada 80 derajat sesudah piston bergerak naik dari Titik Mati Bawah. Berarti sisa untuk langkah kompresi tinggal berapa anak-anak? Hah!? berapa? 90 derajat? Budi! Ayo berdiri di depan kelas sambil angkat kakinya dua-duanya… -Ngawang kalee-

Setiap siklus dalam mesin 4 langkah terjadi memakan proses sebanyak 180 derajat kruk as, sehingga langkah kompresi hanya tinggal 180 – 80 derajat = 100 derajat! Pinter… Nah, berarti langkah kompresi kita gak 100 persen dong? Ya iya lah… tadi kan diatas udah dijelasin kalau nilai RKD pasti lebih kecil dari RK. Gampangnya jika langkah kompresi diprosentasekan maka 100 / 180 derajat x 100 % = 55 %. Jadi jika kita punya mesin dengan RK 10 : 1 maka rasio kompresi sesungguhnya tinggal 5.5 : 1, gitu? Gak segampang itu sobat… Perhitungan yang lebih matang dan mantab akan mampu membuat mesin 4 tak meninggalkan jauh mesin 2 tak… Hmmmm… Obsesi nih :)

Menghitung RKD membutuhkan beberapa data, dan kalkulator tentunya, masa bisa pake sempoa? Pertama, nilai stroke setelah klep intake benar-benar menutup harus didapat. Ini perlu tiga input : Intake Valve Closing Point, Panjang Connecting Rod, Langkah sesungguhnya, dan beberapa rokok biar ga bosen ngitung heheheheh asal! Berikut formulanya yang ga pake one, nanti jadi formula-one dong, jago saya L. Hammilton kan item manisnya mirip saia hahahahahahahah :)

Piston High Compression

Daripada ribet-ribet ngitung tinggal klik aja di http://www.wallaceracing.com/dynamic-cr.php tinggal input-input data dan klik, jadi deh…

Misal motor Yamaha Jupiter, dengan diameter piston 51mm , stroke 54mm, panjang rod 96mm, inlet close pada 80 ABDC. Maka inputnya adalah Bore = 2.0 inches, Stroke = 2.12 inches, Rod length = 3.77, static comression ratio 14 : 1, inlet valve close 80 ABDC. Klik tombol calculate, maka hasilnya adalah :

Static compression ratio of 14:1.
Effective stroke is 1.39 inches.
Your dynamic compression ratio is 9.52:1 .

Camshaft Racing

Mantab kan… Nah lalu apa gunanya kita mengetahui rasio kompresi dinamis? Tentu saja untuk mengetaui perbandingan arah modifikasi kita sudah bener apa belum… Misal jupiter standard inlet valve close pada 65 derajat, jika ingin modifikasi street performance, maka cukup naikin rasio kompresi standard yang awalnya 9 : 1 , bisa dibuat jadi 10.5 : 1 dengan bahan-bakar pertamax, maka rasio kompresi dinamisnya akan berada pada point 8.3 : 1, ini persis seperti apa yang dibilang diatas. Kalau nilai rasio kompresi sudah diperoleh maka tinggal mengatur porting area mau dipatok di RPM berapa, yang pasti jangan lebih tinggi dari 9.000 – 10.000 RPM. Dijamin motor tipe ini akan lebih mudah di tune dibandingkan dengan yang rasio kompresi sama dengan durasi camshaft tinggi. Atau kebalikannya, motor balap dengan rasio kompresi 14 : 1 dengan noken as standard akan sangat sulit di tune dibandingkan dengan yang memakai camshaft “besar”.

Ok, cukup sekian. Tetap sehat, tetap semangat, biar bisa modifikasi mesin tiap hari :)

Drag Bike

Part Shogun FL 125 Jadi Kuncian
2009-11-26 21:46:20

3404shogun--axl-1.jpgTertarik buat main adu kebut di 500 meter? Coba dulu temui Suzuki Shogun SP125 milik Diaz, racikan Herman Pieters yang dijuluki ‘Lanjutkan'. Kiprah motor yang punya warna biru, macam warna dominan Partai Demokrat pimpinan SBY yang jadi pemenang Pemilu Presiden 2009 ini, belum terkalahkan di trek setengah kilometer. Apa rahasia racikannya? Lanjutkan!

"Rahasia apa? Wah, gak pake rahasia segala tuh. Kita buka-bukaan aja yuk," tantang Herman yang juga pemilik workshop Man's Speed di Jl. Masjid, No. 16, Jati Kramat, Jakarta Timur. Untuk bermain di trek itu, Herman menaruh kuncian di part dari Suzuki Shogun 125 terbaru alias Shogun FL. Ada beberapa part yang diandalkan untuk jadi kuncian. Yaitu, noken-as dan bandul kruk-as.3405shogun--axl-2.jpg

Biar makin lengkap, bahas mulai dari bagian mesin atas dulu yak! Agar noken-as mantap memutar klep gambot ukuran 33 mm/ 28,5 mm merek INT, durasi kem dibikin jadi 278º untuk klep isap. Sedang klep buang alias ex, dibikin jadi 279º. Nah, lagi-lagi, yang dipakai noken-as alias kem milik Shogun FL. Kenapa begitu, "Karena kem Shogun FL punya lift yang lebih tinggi dari Shogun SP. Shogun FL liftnya 2,2 mm lebih tinggi ketimbang SP," bilang pria 26 tahun ini.

Dengan begitu jarak main klep bisa lebih jauh membuka dong. Semburan yang masuk ke ruang bakar Kuncianpun jadi lebih mantap. Makin oke lagi, naik-turun batang klep juga diatur kekerasannya oleh per klep buatan Ahon merek SMS.

3406shogun--axl-3.jpgKatanya, per ini lebih oke dari per klep Jepang yang biasa dipakai buat road race. "Mungkin soal kekerasan per enggak jauh beda. Tapi enaknya karena per ini juga lebih tinggi 2,5 mm. Jadi enggak perlu ganjal pakai ring lagi," timpal ayah dua putri ini.

Itu bagian mesin atas! Lanjut ke bagian blok silinder dan kruk-as. Biar power makin besar, langkah bore up dilakukan. Kini, blok Shogun dijejali piston 65,5 mm milik Honda Tiger oversize 200.

Belum cukup sampai situ, langkah stroke up juga dilakukan. Pakai pen stroke 5 mm merek Kawahara, setang seher tetap pakai milik Shogun SP. Kini, stroke bertambah 10 mm naik-turun. So, kapasitas silinder sekarang jadi bengkak ke 219,5 cc.

Oh ya! Ketika naik stroke, bandul kruk-as diganti pakai milik Shogun FL. "Itu karena bandul ini lebih ringan meski tebalnya hampir sama dengan Shogun FL," bilang Herman.

Dengan pakai bandul milik FL, kini putaran kruk-as jadi lebih ringan. Pastinya, power dan torsi mudah diraih. Tapi karena ringan, makanya permainan dibatasi di 500 meter aja. Itupun sudah pakai gir 16/ 30 mata lho.

PERNAH JAJAL DRAG 201

Asal tahu aja, Suzuki Shogun 125 milik Diaz ini pernah juga buat coba turun di arena kebut lurus resmi 201 meter di Sirkuit Sentul. Tapi sayang, akibat liarnya power yang dihasilkan 'Lanjutkan', sang joki kurang mampu meredam liarnya entakan. "Dari gigi satu hingga gigi tiga, motor ogah dikendalikan. Hampir-hampir, nabrak lampu start," bilang Herman yang senang naik Suzuki Skywave 125 ini.

Bisa liar githu, lantaran Herman mengadopsi rasio rapat alias close ratio yang diset untuk Shogun FL. Part itu dibawanya langsung dari Thailand ketika doi berkunjung ke Negeri Gajah Putih beberapa waktu lalu. Oh ya! Dengan liar dan kurang terkendalinya handling saat tes di 201 meter, catatan waktu yang dihasilkan sabet 8,4 detik. "Akhirnya cuma sanggup juara kedua, tuh," aku Herman lagi.